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Biochemistry: Concepts and Connections
As genomics and informatics revolutionize biomedical science and 
health care, we must prepare students for the challenges of the twenty-
first century and ensure their ability to apply quantitative reasoning 
skills to the science most fundamental to medicine: biochemistry.

We have written Biochemistry: Concepts and Connections to pro-
vide students with a clear understanding of the chemical logic under-
lying the mechanisms, pathways, and processes in living cells. The 
title reinforces our vision for this book—twin emphases upon fun-
damental concepts at the expense of lengthy descriptive information, 
and upon connections, showing how biochemistry relates to all other 
life sciences and to practical applications in medicine, agricultural 
sciences, environmental sciences, and forensics.

Inspired by our experience as authors of the biochemistry majors’ 
text, Biochemistry, Fourth Edition and the first edition of this book, 
and as teachers of biochemistry majors’ and mixed-science-majors’ 
courses, we believe there are several requirements that a textbook for 
the mixed-majors’ course must address:

•	 The need for students to understand the structure and function of 
biological molecules before moving into metabolism and dynamic 
aspects of biochemistry.

•	 The need for students to understand that biochemical concepts 
derive from experimental evidence, meaning that the principles 
of biochemical techniques must be presented to the greatest 
extent possible.

•	 The need for students to encounter many and diverse real-world 
applications of biochemical concepts.

•	 The need for students to understand the quantitative basis for bio-
chemical concepts. The Henderson–Hasselbalch equation, the quanti-
tative expressions of thermodynamic laws, and the Michaelis–Menten 
equation, for example, are not equations to be memorized and for-
gotten when the course moves on. The basis for these and other 
quantitative statements must be understood and constantly repeated 
as biochemical concepts, such as mechanisms of enzyme action, are 
developed. They are essential to help students grasp the concepts.

In designing Biochemistry: Concepts and Connections, we have 
stayed with the organization that serves us well in our own classroom 
experience. The first 10 chapters cover structure and function of biologi-
cal molecules, the next 10 deal with intermediary metabolism, and the 
final 6 with genetic biochemistry. Our emphasis on biochemistry as a 
quantitative science can be seen in Chapters 2 and 3, where we focus on 
water, the matrix of life, and bioenergetics. Chapter 4 introduces nucleic 
acid structure, with a brief introduction to nucleic acid and protein syn-
thesis—topics covered in much more detail at the end of the book.

Chapters 11 through 20 deal primarily with intermediary metabolism. 
We cover the major topics in carbohydrate metabolism, lipid metabolism, 
and amino acid metabolism in one chapter each (12, 16, and 18, respec-
tively). Our treatment of cell signaling is a bit unconventional, since it 
appears in Chapter 20, well after we present hormonal control of carbohy-
drate and lipid metabolism. However, this treatment allows more extended 

presentation of receptors, G proteins, oncogenes, and neurotransmission. 
In addition, because cancer often results from aberrant signaling processes, 
our placement of the signaling chapter leads fairly naturally into genetic 
biochemistry, which follows, beginning in Chapter 21.

With assistance from talented artists, we have built a compelling 
visual narrative from the ground up, composed of a wide range of 
graphic representations, from macromolecules to cellular structures as 
well as reaction mechanisms and metabolic pathways that highlight 
and reinforce overarching themes (chemical logic, regulation, interface 
between chemistry and biology). In addition, we have added two new 
Foundation Figures to the Second Edition, bringing the total number 
to 10. These novel Foundation Figures integrate core chemical and bio-
logical connections visually, providing a way to organize the complex 
and detailed material intellectually, thus making relationships among 
key concepts clear and easier to study. The “CONCEPT” and 
“CONNECTION” statements within the narrative, which highlight 
fundamental concepts and real-world applications of biochemistry, have 
been reviewed and revised for the Second Edition.

In Biochemistry: Concepts and Connections, we emphasize our 
field as an experimental science by including 17 separate sections, 
called Tools of Biochemistry, that highlight the most important 
research techniques. We also provide students with references (about 
12 per chapter), choosing those that would be most appropriate for 
our target audience, such as links to Nobel Prize lectures.

We consider end-of-chapter problems to be an indispensable learn-
ing tool and provide 15 to 25 problems for each chapter. (In the Second 
Edition we have added 3 to 4 new end-of-chapter problems to each 
chapter.) About half of the problems have brief answers at the end 
of the book, with complete answers provided in a separate solutions 
manual. Additional tutorials in Mastering Chemistry will help students 
with some of the most basic concepts and operations. See the table of 
Instructor and Student Resources on the following page.

Producing a book of this magnitude involves the efforts of dedi-
cated editorial and production teams. We have not had the pleasure of 
meeting all of these talented individuals, but we consider them close 
colleagues nonetheless. First, of course, is Jeanne Zalesky, our sponsor-
ing editor, now Editor-in-Chief, Physical Sciences, who always found a 
way to keep us focused on our goal. Susan Malloy, Program Manager, 
kept us organized and on schedule, juggling disparate elements in this 
complex project—later replaced by Anastasia Slesareva. Jay McElroy, 
Art Development Editor, was our intermediary with the talented artists 
at Imagineering, Inc., and displayed considerable artistic and editorial 
gifts in his own right. We also worked with an experienced development 
editor, Matt Walker. His suggested edits, insights, and attention to detail 
were invaluable. Beth Sweeten, Senior Project Manager, coordinated 
the production of the main text and preparation of the Solutions Manual 
for the end-of-chapter problems. Gary Carlton provided great assistance 
with many of the illustrations. Chris Hess provided the inspiration for 
our cover illustration, and Mo Spuhler helped us locate much excellent 
illustrative material. Once the book was in production, Mary Tindle skill-
fully kept us all on a complex schedule.

Preface
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The three of us give special thanks to friends and colleagues who 
provided unpublished material for us to use as illustrations. These 
contributors include John S. Olson (Rice University), Jack Benner 
(New England BioLabs), Andrew Karplus (Oregon State University), 
Scott Delbecq and Rachel Klevit (University of Washington), William 
Horton (Oregon Health and Science University), Cory Hamada (Western 
Washington University), Nadrian C. Seaman (New York University),  
P. Shing Ho (Colorado State University), Catherine Drennan and 
Edward Brignole (MIT), John G. Tesmer (University of Michigan), 
Katsuhiko Murakami (Penn State University), Alan Cheung (Univer-
sity College London), Joyce Hamlin (University of Virginia), Stefano 
Tiziani, Edward Marcotte, David Hoffman, and Robin Gutell (Univer-
sity of Texas at Austin), Dean Sherry and Craig Malloy (University of 
Texas-Southwestern Medical Center), and Stephen C. Kowalczykowski 
(University of California, Davis). The cover image, representing in part 
the structure of the human splicesome, was kindly provided by Karl 
Bertram (University of Göttingen, Germany).

We are also grateful to the numerous talented biochemists 
retained by our editors to review our outline, prospectus, chapter 
drafts, and solutions to our end-of-chapter problems. Their names 
and affiliations are listed separately.

Our team—authors and editors—put forth great effort to detect and 
root out errors and ambiguities. We undertook an arduous process of edit-
ing and revising several drafts of each chapter in manuscript stage, as well 
as copyediting, proofreading, and accuracy, reviewing multiple rounds of 
page proofs in an effort to ensure the highest level of quality control.

Throughout this process, as in our previous writing, we have been 
most grateful for the patience, good judgment, and emotional support 

provided by our wives—Maureen Appling, Yvonne Anthony-Cahill, 
and Kate Mathews. We expect them to be as relieved as we are to see 
this project draw to a close, and hope that they can share our pleasure 
at the completed product.

Dean R. Appling
Spencer J. Anthony-Cahill

Christopher K. Mathews

Reviewers
The following reviewers provided valuable feedback on the manu-
script at various stages throughout the wiring process:

Paul D. Adams, University of Arkansas
Harry Ako, University of Hawaii–Manoa
Eric J. Allaine, Appalachian State University
Mark Alper, University of California—Berkeley
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Trevor R. Anderson, Purdue University
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Marilee Benore, University of Michigan
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Werner Bergen, Auburn University

Resource
Instructor or 
Student Resource Description

Solutions Manual 
ISBN: 0134814800

Instructor Prepared by Dean Appling, Spencer Anthony-Cahill, and Christopher Mathews, the 
solutions manual includes worked-out answers and solutions for problems in the text.

Mastering™ Chemistry 
pearson.com/mastering/chemistry
ISBN: 0134787250

Student & 
Instructor

Mastering™ Chemistry is the leading online homework, tutorial, and assessment 
platform, designed to improve results by engaging students with powerful content. 
Instructors ensure students arrive ready to learn by assigning educationally effective 
content before class, and encourage critical thinking and retention with in-class 
resources such as Learning Catalytics. Learn more about Mastering Chemistry.
Mastering Chemistry for Biochemistry: Concepts and  Connections, 2/e now has 
hundreds of more biochemistry-specific assets to help students tackle threshold 
concepts, connect course materials to real world applications, and build the 
problem solving skills they need to succeed in future courses and careers.

Pearson eText
ISBN: 0134763025

Student Biochemistry: Concepts and Connections 2/e now offers Pearson eText, optimized 
for mobile, which seamlessly integrates videos and other rich media with the text 
and gives students access to their textbook anytime, anywhere. Pearson eText 
is available with Mastering Chemistry when packaged with new books, or as an 
upgrade students can purchase online. The Pearson eText mobile app offers:

• � Offline access on most iOS and Android phones/tablets.
• � Accessibility (screen-reader ready)
• � Configurable reading settings, including resizable type and night reading mode
• � Instructor and student note-taking, highlighting, bookmarking, and search tools
• � Embedded videos for a more interactive learning experience

TestGen Test Bank
ISBN: 0134814827

Instructor This resource includes more than 2000 questions in multiple-choice answer format. 
Test bank problems are linked to textbook-specific learning outcomes as well as 
MCAT-associated outcomes. Available for download on the Pearson catalog page 
for Biochemistry: Concepts and Connections at www.pearson.com

Instructor Resource Materials 
ISBN: 0134814843
ISBN: 0134814835

Instructor Includes all the art, photos, and tables from the book in JPEG format, as well 
as Lecture Powerpoint slides, for use in classroom projection or when creating 
study materials and tests. Available for download on the Pearson catalog page for 
Biochemistry: Concepts and Connections at www.pearson.com

Instructor and Student Resources
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When an electric field is applied to a solution, solute mol-
ecules with a net positive charge migrate toward the cathode, 
and molecules with a net negative charge move toward the 
anode. This migration is called electrophoresis. Although 
electrophoresis can be carried out free in solution, it is more 
convenient to use some kind of supporting medium through 
which the charged molecules move. The supporting medium 
could be paper or, most typically, a gel composed of the poly-
saccharide agarose (commonly used to separate nucleic acids; 
see FIGURE 2A.1) or crosslinked polyacrylamide (commonly 
used to separate proteins).

The velocity, or electrophoretic mobility (M), of the mole-
cule in the field is defined as the ratio between two opposing fac-
tors: the force exerted by the electric field on the charged particle, 
and the frictional force exerted on the particle by the medium:

 m =
Ze
f

 (2A.1)3

The numerator equals the product of the negative (or posi-
tive) charge (e) times the number of unit charges, Z (a positive 
or negative integer). The greater the overall charge on the mol-
ecule, the greater the force it experiences in the electric field. 
The denominator f is the frictional coefficient, which depends on the 
size and shape of the molecule. Large or asymmetric molecules encoun-
ter more frictional resistance than small or compact ones and conse-
quently have larger frictional coefficients. Equation 2A.1 tells us that 
the mobility of a molecule depends on its charge and on its molecular 
dimensions.‡ Because ions and macroions differ in both respects, 
electrophoresis provides a powerful way of separating them.

Gel Electrophoresis
In gel electrophoresis, a gel containing the appropri-
ate buffer solution is cast in a mold (for agarose gel 
electrophoresis, shown in Figure 2A.1) or as a thin 
slab between glass plates (for polyacrylamide gel elec-
trophoresis, shown in FIGURE 2A.2). The gel is placed 
between electrode compartments, and the samples to 
be analyzed are carefully pipetted into precast notches 
in the gel, called wells. Usually, glycerol and a water-
soluble anionic “tracking” dye (such as bromophenol 
blue) are added to the samples. The glycerol makes the 
sample solution dense, so that it sinks into the well and 
does not mix into the buffer solution. The dye migrates 
faster than most macroions, so the experimenter is able 
to follow the progress of the experiment. The current 
is turned on until the tracking dye band is near the side 
of the gel opposite the wells. The gel is then removed 
from the apparatus and is usually stained with a dye that 
binds to proteins or nucleic acids. Because the protein 

2A Electrophoresis and Isoelectric FocusingTOOLS OF 
BIOCHEMISTRY

▲  FIGURE 2A.1 Electrophoresis. A molecule with a net positive charge will migrate 
toward the cathode, whereas a molecule with a net negative charge will migrate 
toward the anode.
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▲  FIGURE 2A.2 Gel electrophoresis. An apparatus for polyacrylamide gel electropho-
resis is shown schematically. The gel is cast between plates. The gel is in contact with 
buffer in the upper (cathode) and lower (anode) reservoirs. A sample is loaded into one 
or more wells cast into the top of the gel, and then current is applied to achieve separa-
tion of the components in the sample.
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‡Equation 2A.1 is an approximation which neglects the effects  
of the ion atmosphere. See van Holde, Johnson, and Ho in  
Appendix II for more detail.

or nucleic acid mixture was applied as a narrow band in the well of the 
gel, components migrating with different electrophoretic mobilities 
appear as separated bands on the gel. FIGURE 2A.3 shows an example 
of separation of DNA fragments by this method using an agarose gel. 
An example of the electrophoretic separation of proteins using a poly-
acrylamide gel is shown in Chapter 5 (see Figure 5A.9).
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Polyelectrolytes like DNA or polylysine have one unit charge on each 
residue, so each molecule has a charge (Ze) proportional to its molecular 
length. But the frictional coefficient ( f ) also increases with molecular 
length, so to a first approximation, a macroion whose charge is propor-
tional to its length has an electrophoretic mobility almost independent 
of its size. However, gel electrophoresis introduces additional frictional 
forces that allow the separation of molecules based on size. For linear 
molecules like the nucleic acid fragments in Figure 2A.3, the relative 
mobility in an agarose gel is a pproximately a linear function of the loga-
rithm of the molecular weight. Usually, standards of known molecular 
weight are electrophoresed in one or more lanes on the gel. The molecular 
weight of the sample can then be estimated by comparing its migration 
in the gel to those of the standards. For proteins, a similar separation in a 
polyacrylamide gel is achieved by coating the denatured protein molecule 
with the anionic detergent sodium dodecylsulfate (SDS) before electro-
phoresis. This important technique is discussed further in Chapter 5.

Isoelectric Focusing
Proteins are polyampholytes; thus, a protein will migrate in an electric 
field like other ions if it has a net positive or negative charge. At its iso-
electric point, however, its net charge is zero, and it is attracted to neither 
the anode nor the cathode. If we use a gel with a stable pH gradient cover-
ing a wide pH range, each protein molecule in a complex mixture of pro-
teins migrates to the position of its isoelectric point and accumulates there. 
This method of separation, called isoelectric focusing, produces distinct 
bands of accumulated proteins and can separate proteins with very small 
differences in the isoelectric point (FIGURE 2A.4). Since the pH of each 
portion of the gel is known, isoelectric focusing can also be used to deter-
mine experimentally the isoelectric point of a particular protein.

What we have presented here is only a brief overview of a widely 
applied technique. Additional information on electrophoresis and iso-
electric focusing can be found in Appendix II.

▲  FIGURE 2A.3 Gel showing separation of DNA fragments. Following 
electrophoretic separation of the different-length DNA molecules, the  
gel is mixed with a fluorescent dye that binds DNA. The unbound dye is 
then washed off, and the stained DNA molecules are visualized under 
ultraviolet light.

Top of gel

Increasing
molecular
weight of
DNA

Direction of
electrophoresis

1

2

▲  FIGURE 2A.4 Isoelectric focusing of proteins. (a) An isoelectric focusing gel with a pH gradient from 3.50 (anode 
end) to 9.30 (cathode end). (b) A schematic showing where proteins of the indicated pIs would accumulate (peaks 
shown in red) in a pH gradient gel.

7.2

p
H

7.0

7.4

7.6

Cathode

Position in gel

Accumulation
of protein

pH of the gel

pI 7.46

pI 7.64 pI 7.44 pI 7.30

pI 7.36 pI 7.23

Anode

7.8

8.0

P
ro

te
in

 c
o

nc
en

tr
at

io
n

12

(b)(a)

M02_APPL1621_02_SE_C02.indd   45 14/09/17   12:56 PM

A01_APPL1621_02_SE_FM.indd   23 10/11/17   10:30 AM



xxiv

Foundation Figures

FOUNDATION FIGURES integrate core chemical and biological connections visually and provide 
a way to organize the complex and detailed material intellectually, thus making relationships 
among key concepts clear and easier to study.

	Chapter 2	 Biomolecules: Structure and Function 46

	Chapter 6	 Protein Structure and Function 188

	Chapter 8	 Regulation of Enzyme Activity 276

	Chapter 10	 Targeting Pain and Inflammation through Drug Design 338

	Chapter 11	 Enzyme Kinetics and Drug Action 372

Chapter 14	 Intermediary Metabolism 484

	Chapter 17	 Energy Regulation 574

	Chapter 20	 Cell Signaling and Protein Regulation 662

	Chapter 23	 Antibody Diversity and Use as Therapeutics 740

	Chapter 26	 Information Flow in Biological Systems 822

Enhanced art and media programs 
en gage students

 
The second edition of Appling, Mathews, & Anthony-Cahill’s Biochemistry: Concepts and Connections 
builds student understanding even more with an enhanced art program and a deeper, more robust 
integration with Mastering Chemistry. This renowned author team’s content engages students with 
visualization, synthesis of complex topics, and connections to the real world resulting in a seamlessly 
integrated experience.

A01_APPL1621_02_SE_FM.indd   24 09/11/17   2:51 PM



Enhanced art and media programs 
en gage students

 
UPDATED & REVISED! The second edition of Appling, Mathews, & Anthony-Cahill’s Biochemistry: 
Concepts and Connections builds student understanding even more with an enhanced art 
program and a deeper, more robust integration with Mastering Chemistry. This renowned author team’s 
content engages students with visualization, synthesis of complex topics, and connections to the real 
world resulting in a seamlessly integrated experience.

A01_APPL1621_02_SE_FM.indd   25 10/11/17   10:30 AM



Best-in-class visualization tools 
help students to see 

10 | CHAPTER 12  Carbohydrate Metabolism: Glycolysis, Gluconeogenesis, Glycogen Metabolism, and the Pentose Phosphate Pathway

Reaction 4 is so strongly end-
ergonic under standard conditions 
that the formation of fructose-
1,6-bisphosphate is highly favored. 
However, from the actual intracel-
lular concentrations of the reactant 
and products, ∆G is estimated to 
be approximately -1.3 kJ>mol, 
consistent with the observation 

that the reaction proceeds as written in vivo. Reaction 4 demonstrates 
the importance of considering the conditions in the cell (∆G) rather 
than standard state conditions (∆G°′) when deciding in which direc-
tion a reaction is favored.

Aldolase activates the substrate for cleavage by nucleophilic attack 
on the keto carbon at position 2 with a lysine e-amino group in the 
active site, as shown in FIGURE 12.5. This is facilitated by protonation of 
the carbonyl oxygen by an active site acid (aspartate) 1 . The resulting 
carbinolamine undergoes dehydration to give an iminium ion, or pro-
tonated Schiff base 2 . A Schiff base is a nucleophilic addition product 
between an amino group and a carbonyl group. A retro-aldol reaction 
then cleaves the protonated Schiff base into an enamine plus GAP 3 .  
The enamine is protonated to give another iminium ion (protonated 
Schiff base) 4 , which is then hydrolyzed off the enzyme to give the 
second product, DHAP 5 .

The Schiff base intermediate is advantageous in this reaction because 
it can delocalize electrons. The positively charged iminium ion is thus 
a better electron acceptor than a ketone carbonyl, facilitating retro-
aldol reactions like this one and, as we shall see, many other biological 

conversions. This mechanism also demonstrates why it was important to 
isomerize G6P to F6P in reaction 2. If glucose had not been isomerized 
to fructose (moving the carbonyl from C-1 to C-2), then the aldolase 
reaction would have given two- and four-carbon fragments, instead of 
the metabolically equivalent three-carbon fragments.

Reaction 5 : Isomerization of Dihydroxyacetone Phosphate
In reaction 5, triose phosphate isomerase (TIM) catalyzes the 
isomerization of dihydroxyacetone phosphate (DHAP) to glyceral-
dehyde-3-phosphate (GAP) via an enediol intermediate.

Reaction 5: Triose phosphate isomerase (TIM)

DG 89 5 17.6 kJ/mol

Dihydroxyacetone
phosphate

(DHAP)

CH2OH

C O

H2C OPO3
22

D-Glyceraldehyde-
3-phosphate

(GAP)

C

H

CH OH

H2C OPO3
22

O

Enediol
intermediate

HO

C

H

C OH

H2C OPO3
22

Like reaction 4, reaction 5 is weakly endergonic under standard condi-
tions, but the intracellular concentration of GAP is low because it is con-
sumed in subsequent reactions. Thus, reaction 5 is drawn toward the right.

●● CONCEPT Aldolase cleaves 
fructose-1,6-bisphosphate under 
intracellular conditions, even 
though the equilibrium lies far 
toward fructose-1,6-bisphosphate 
under standard conditions.
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▲ FIGURE 12.5 Reaction mechanism for fructose-1,6-bisphosphate aldolase. The Figure shows the protonated Schiff 
base intermediate (iminium ion) between the substrate and an active site lysine residue. An aspartate residue facilitates 
the reaction via general acid–base catalysis.
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▲ FIGURE 12.5 Reaction mechanism for fructose-1,6-bisphosphate aldolase. The Figure shows the protonated Schiff 
base intermediate (iminium ion) between the substrate and an active site lysine residue. An aspartate residue facilitates 
the reaction via general acid–base catalysis.
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60 | CHAPTER 3  The Energetics of Life

1. ∆G°′ is used, signifying the biochemical standard state.

2. The mass action expression Q is unitless. We strip the units 
from each concentration term in Q by dividing each by its 
proper standard concentration (e.g., 1 M for all solutes except 
H+ ; 10-7 M for H+ ; 1 bar for gases, etc.).

The significance of these two points is illustrated in the follow-
ing example. Let us calculate ∆G for the hydrolysis of ATP at pH 
7.4, 25 °C, where the concentrations of ATP, ADP, and HPO4

2-  are, 
respectively, 5 mM, 0.1 mM, and 35 mM. As we will see in the next 
section of this chapter, ∆G°′ = -32.2 kJ / mol for ATP hydrolysis. 
Under these conditions, Equation 3.30 can be written as

∆G = -32.2 
kJ

mol
+ a0.008314 

kJ
mol # K b (298 K)

 ln ±

(0.0001 M)

(1 M)
 
(0.035 M)

(1 M)
 
(10-7.4 M)

(10-7 M)
(0.005 M)

(1 M)
 (1)

≤  (3.31a)

Note that we have expressed concentrations of all solutes in units of 
molarity, then divided by the proper standard state concentration (also 
in units of molarity). These steps ensure that the terms in Q are of the 
proper magnitude and stripped of units:

∆G = -32.2 
kJ

mol
+ a2.478 

kJ

mol
b

  ln a (0.0001)(0.035)(0.398)

(0.005)
b  (3.31b)

or

 ∆G = -32.2 
kJ

mol
 + -20.3 

kJ
mol

= -52.5 
kJ

mol
 (3.31c)

Note that the value calculated for ∆G is much more negative 
(i.e., more favorable) than the standard free energy change ∆G°′. 
This last point underscores the fact that it is ∆G and not ∆G°′ that 
determines the driving force for a reaction. However, to evaluate ∆G 
using Equation 3.19, we must be given, or be able to calculate, ∆G°′ 
for the reaction of interest. Recall that ∆G°′ can be calculated from K 
using Equation 3.22. In the remaining pages of this chapter, we will 
use examples relevant to biochemistry to illustrate two alternative 
methods for calculating ∆G°′.

3.4  Free Energy in Biological Systems
Understanding the central role of free energy changes in determin-
ing the favorable directions for chemical reactions is important in 
the study of biochemistry because every biochemical process (such 
as protein folding, metabolic reactions, DNA replication, or mus-
cle contraction) must, overall, be a thermodynamically favorable 
process. Very often, a particular reaction or process that is neces-
sary for life is in itself endergonic. Such intrinsically unfavorable 
processes can be made thermodynamically favorable by coupling 
them to strongly favorable reactions. Suppose, for example, we 
have a reaction A S B that is part of an essential pathway but is 
endergonic under standard conditions:

A ∆ B    ∆G°′ = +10 kJ/mol

At the same time, suppose another process is highly exergonic:

C ∆ D    ∆G°′ = -30 kJ/mol

If the cell can manage to couple these two reactions, the ∆G°′ for the 
overall process will be the algebraic sum of the values of ∆G°′ for 
the individual reactions:

A ∆ B ∆G°′ = +10 kJ/mol

C ∆ D ∆G°′ = -30 kJ/mol

Overall: A + C ∆ B + D ∆G°′ = -20 kJ/mol

Equilibrium for the overall process now lies far to the right, with the 
consequence that, in the coupled process, B is more favorably produced 
from A. Many critical reactions in cells are driven forward by coupling 
an unfavorable reaction to a highly favorable one.

Organic Phosphate Compounds as Energy Transducers
In cells, driving an unfavorable process by coupling it to a favorable 
one requires the availability of compounds (like the hypothetical 
C in our previous example) that can undergo reactions with large 
negative free energy changes. Such substances can be thought of as 
energy transducers in the cell. Many of these energy-transducing 
compounds are organic phosphates such as ATP (FIGURE 3.5), which 
can transfer a phosphoryl group (-PO3

2-) to an acceptor molecule. 
You will see many examples of phosphoryl group transfer reactions 
in this text. As shown in Figure 3.5, we will use a common shorthand 
notation, P , to represent the phosphoryl group when describing 
these processes.
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▲● FIGURE 3.5 The phosphoryl groups in ATP. Top: The three phosphoryl 
groups in ATP are shown in red, blue, and green. Middle: A commonly 
used shorthand for a phosphoryl group is the symbol P . Bottom: The 
three phosphoryl groups in ATP are represented by this symbol.
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Discovering new medicines requires comprehension of the structure 

and function of the drug target, whether that be an enzyme, a gene,  

or a signaling molecule. Success in drug discovery requires deep 

understanding of biochemistry and its allied disciplines.  
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Biochemistry and the 
Language of Chemistry
“MUCH OF LIFE can be understood in rational terms if 

expressed in the language of chemistry. It is an international  

language, a language for all of time, and a language that explains 

where we came from, what we are, and where the physical world 

will allow us to go.” These words were written in 1987 by Arthur 

Kornberg (1918–2007), one of the greatest biochemists of the 

twentieth century, and they provide a backdrop for our study of 

biochemistry. Because it seeks to understand the chemical basis 

for all life processes, biochemistry is at once a biological science 

and a chemical science. Indeed, all of the traditional disciplines 

within biology—including physiology, genetics, evolution, and 

ecology, to name a few—now use the language and techniques 

of chemistry. Many of you who are using this book are planning 

careers in life sciences—in teaching, basic research, health  

sciences, science journalism, drug discovery, environmental  

science, bioengineering, agriculture, science policy, and more. 

You will find biochemistry at the heart of all fields within the  

biological sciences.

Chapter 1

1.1	 The Science of Biochemistry

1.2	 The Elements and Molecules  
of Living Systems

1.3	 Distinguishing Characteristics  
of Living Systems

1.4	 The Unit of Biological Organization: 
The Cell

1.5	 Biochemistry and the Information 
Explosion

1
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4  |  CHAPTER 1  Biochemistry and the Language of Chemistry

As we proceed through our study of biochemistry, 
think about “the language of chemistry.” To under-
stand a language, we must become familiar with the 
words and how to incorporate them into sentences. 
In this text we will be faced with numerous chemical 
names and structures that must be learned, such as 
the amino acids in proteins or the sugars in starch or 
cellulose. These are the words in the biochemical lan-
guage, and learning them will occupy much of the first 
several chapters of this book. Next, we begin putting 
these words into sentences—chemical reactions—and 
paragraphs—metabolic pathways, which are made up 
of linked sequences of two or more individual reactions. 
Reading the sentences and paragraphs will require that 
we learn about enzymes and catalysis of biochemical 
reactions. Later we move from paragraphs to pages 
and chapters, as we explore how metabolic processes 
in different tissues interrelate to explain, for example, 
the adaptation of an animal to starvation, or the pos-
sible effects of calorie restriction on life-span exten-
sion. We will also learn what regulates expression of the 
biochemical language when we explore chromosomes, 
genomes, and genes—and how the controlled expres-
sion of genes dictates which sentences will be printed 
and in which cells, and how instructions in the language 
are transmitted from generation to generation.

As we discuss the biochemical language and 
its expression, three themes will dominate our 

discussion—metabolism, energy, and regulation. What 
are the chemical reactions? How is metabolic work 
done? How is expression of the language controlled?

In order to apply the 
language of chemistry 
to learning biochem-
istry, you will need 

to recall much of what you learned in organic chem-
istry—the structures and properties of the principal 
functional groups, for example. Chapter 2 provides a 
brief review of the major functional groups, and Chapter 
11 describes those reaction mechanisms most directly 
involved in biochemistry.

Because most of you are learning the biochemical 
language for the first time, our initial emphasis must 
be on individual reactions and pathways, operating to 
some extent in isolation. Be aware, however, that pluck-
ing individual reactions out of a cell for investigation is 
artificial and that a chemical reaction within a cell is but 
one in a coordinated system of hundreds or thousands 
of individual reactions, all occurring in the same time 
and space. In the past two decades, techniques have 
been developed that allow analysis of a true systems 
biology—chemical reactions as they occur within a 
complex system rather than in isolation. In time, we will 
discuss these techniques and what they teach us, but 
the emphasis in a first course in biochemistry is on ele-
ments and expression of the biochemical language.

●● CONCEPT  All of the life sciences 
require an understanding of the language 
of chemistry.

1.1  The Science of Biochemistry
Humankind has harvested the fruits of biochemistry for thousands of 
years, perhaps beginning some 8000 years ago with the fermentation 
of grapes into wine. FIGURE 1.1 illustrates winemaking as it was carried 
out in Egypt in about 1500 b.c. However, the science behind winemak-
ing and many other biochemical applications, such as medicinal folk 
remedies or the tanning of leather, remained obscure until the past 
three centuries or so, with the birth of biochemistry as a science. With 
respect to winemaking, see Chapter 12 for a presentation of glycolysis,  
the fundamental process for the breakdown of sugars, which in yeast 
and other microorganisms converts the sugar to ethanol.

The Origins of Biochemistry
Biochemistry as a science can be said to have originated early in the 
nineteenth century, with the pioneering work of Friedrich Wöhler 

(1800–1882) in Germany. Prior to Wöhler’s time, it was believed that 
the substances in living cells and organisms were somehow qualitatively 
different from those in nonliving matter and did not behave according 
to the known laws of physics and chemistry. In 1828 Wöhler showed 
that urea, a substance of biological origin, could be synthesized in 
the laboratory from the inorganic compound, ammonium cyanate. As 
Wöhler phrased it in a letter to a colleague, “I must tell you that I can 
prepare urea without requiring a kidney or an animal, either man or 
dog.” This was a shocking state-
ment in its time, for it breached 
the presumed barrier between the 
living and nonliving.

Another landmark in the his-
tory of biochemistry occurred in 
the mid-nineteenth century when 
the great French chemist Louis 

Wöhler’s synthesis of urea
from ammonium cyanate:

Ammonium
cyanate

Urea

H2N NH2NH4NCO2 C

O
1
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Pasteur (1822–1895) turned his attention to fermentation in order to 
help the French wine industry. Pasteur recognized that wine could be 
spoiled by the accidental introduction of bacteria during the fermenta-
tion process and that yeast cells alone possess the ability to convert 
the sugars in grapes to ethanol in wine. Following this discovery, he 
devised ways to exclude bacteria from fermentation mixtures.

Although Pasteur dem-
onstrated that yeast cells in 
culture could ferment sugar 
to alcohol, he adhered to the 
prevailing view known as 
vitalism, which held that bio-
logical reactions took place 

only through the action of a mysterious “life force” rather than physical 
or chemical processes. In other words, the fermentation of sugar into 
ethanol could occur only in whole, living cells.

The vitalist dogma was shattered in 1897 when two German broth-
ers, Eduard (1860–1917) and Hans Buchner (1850–1902), found that 
extracts from broken and thoroughly dead yeast cells could carry out 
the entire process of fermentation of sugar into ethanol. This discovery 
opened the door to analysis of biochemical reactions and processes 
in vitro (Latin, “in glass”), meaning in a test tube—or, more gen-
erally, outside of a living organism or cell, rather than in vivo, in 
living cells or organisms. In the following decades, other metabolic 
reactions and reaction pathways were reproduced in vitro, allowing 
identification of reactants and products and of the biological cata-
lysts, known as enzymes, that promoted each biochemical reaction. 
The name “enzyme,” coined in 1878, comes from the Greek en zyme 
(meaning “in yeast”), reflecting the fact that the chemical nature of 

these catalysts did not become known until some time 
later, as described below.

The nature of biological catalysis remained the last 
refuge of the vitalists, who held that the structures of 
enzymes were far too complex to be described in chemi-
cal terms. But in 1926, James B. Sumner (1887–1955) 
showed that an enzyme from jack beans, called urease, 
could be crystallized like any organic compound and 
that it consisted entirely of protein. Although proteins 
have large and complex structures, they are just organic 
compounds, and their structures can be determined by 
the methods of chemistry and physics. This discovery 
marked the final fall of vitalism.

Although developments in the first half of the twenti-
eth century revealed in broad outline the chemical struc-
tures of biological materials, identified the reactions in 
many metabolic pathways, and localized these reactions 
within the cell, biochemistry remained an incomplete 
science. We knew that the uniqueness of an organism is 
determined by the totality of its chemical reactions. How-
ever, we had little understanding of how those reactions 
are controlled in living tissue or of how the information 
that regulates those reactions is stored, transmitted when 
cells divide, and processed when cells differentiate.

What factors determine why yeast cells might fer-
ment sugars to ethanol, while bacteria contaminating 
a wine culture might convert the sugars to acetic acid 
and turn the wine culture to vinegar? To answer this 

question, we must understand expression of genes, which control syn-
thesis of the enzymes involved. The idea of the gene, a unit of hereditary 
information, was first proposed in the mid-nineteenth century by Gregor 
Mendel (1882–1894), an Austrian monk, from his studies on the genetics 
of pea plants. By about 1900, cell biologists realized that genes must 
be found in chromosomes, which are composed of proteins and nucleic 
acids. Subsequently, the new science of genetics provided increasingly 
detailed knowledge of patterns of inheritance and development. However, 
until the mid-twentieth century no one had isolated a gene or determined 
its chemical composition. Nucleic acids had been recognized as cel-
lular constituents since their discovery in 1869 by Friedrich Miescher 
(1844–1895). But their chemical structures were poorly understood, and 
in the early 1900s nucleic acids were thought to be simple substances, 
fit only for structural roles in the cell. Most biochemists believed that 
only proteins were sufficiently complex to carry genetic information.

That belief turned out to be incorrect. Experiments in the 1940s and 
early 1950s proved conclusively that deoxyribonucleic acid (DNA) is 
the primary bearer of genetic information (ribonucleic acid, RNA, is 
also an informational molecule). The year 1953 was a landmark year, 
when James Watson (1928–) and Francis Crick (1916–2004) described 

the double-helical structure of 
DNA. This concept immedi-
ately suggested ways in which 
information could be encoded 
in the structure of molecules 
and transmitted intact from 

one generation to the next. The discovery of DNA structure, which we 
describe more fully in Chapter 4, represents one of the most important 
scientific developments of the twentieth century (FIGURE 1.2).

▲  FIGURE 1.1  An ancient application of biochemistry. Manufacture of wine in Egypt, 
around 1500 b.c.

●● CONCEPT  Early biochemists had to 
overcome the doctrine of vitalism, which 
claimed that living matter and nonliving 
matter were fundamentally different.

●● CONCEPT  Biology was transformed 
in 1953, when Watson and Crick pro-
posed the double-helical model for 
DNA structure.
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6  |  CHAPTER 1  Biochemistry and the Language of Chemistry

Although Watson and Crick made their landmark discovery over six 
decades ago, the revolution ushered in by that discovery is still underway, 
as seen by some of the major advances that have occurred since 1953. 
By the early 1960s, we knew much about the functions of RNA in gene 
expression, and the genetic code had been deciphered (see Chapters 24 
and 25). By the early 1970s, the first recombinant DNA molecules were 
produced in the laboratory (see Chapter 4), opening the door, as no other 
discovery had done, to practical applications of biological information in 
health, agriculture, forensics, and environmental science. By the next 
decade, scientists had learned how to amplify minute amounts of 
DNA (see Chapter 21) so that any gene could be isolated by cloning 
(Chapter 4), allowing any desired change to be made in the structure of 
a gene. After another decade, by the early 1990s, scientists had learned 
not only how to introduce new genes into the germ line of plants and 
animals, but also how to disrupt or delete any gene, allowing analysis of 
the biochemical function of any gene product (see Chapter 23). A decade 
later, the nearly complete nucleotide sequence of the human genome 
was announced—2.9 * 109 base pairs of DNA, representing more than 
20,000 different genes. At about the same time came discoveries regard-
ing noncoding properties of RNA, in catalysis and gene regulation 
(Chapters 7, 25, and 26). The 20-teens saw development of CRISPR 
(clustered regularly interspersed short palindromic repeats) tech-
nology, which allowed unprecedented opportunities for editing genes in 
living organisms (Chapter 23). The wealth of information from genomic 
sequence analysis and gene regulation by RNA continues to transform 
the biochemical landscape well into the twenty-first century.

The Tools of Biochemistry
The advances in biochemistry discussed in the previous section and 
described throughout this book would not have been possible without the 

development of new technologies for studying biological molecules and 
processes. Biochemistry is an experimental science—more so, for example, 
than physics, with its large theoretical component. To understand the key 
biochemical concepts and processes, we must have some understanding 
of the experiments that helped us elucidate them. We will describe the 
experimental basis for much of our understanding of biochemistry in this 
book. In some cases, the description of experimental techniques will be set 
apart in end-of-chapter segments called “Tools of Biochemistry.”

In the case of DNA structural analysis, the needed technology came 
from X-ray diffraction. Physicists and chemists had learned that the 
molecular structures of small crystals could be determined by analyz-
ing patterns showing how X-rays are deflected upon striking atoms 
in a crystal. Stretched DNA fibers yield comparable data, and these 
patterns (obtained by Rosalind Franklin, 1920–1958; see Chapter 4), 
along with the chemical structures of the individual nucleotide units 
in DNA, led Watson and Crick to their leap of intuition.

FIGURE 1.3 shows a timeline for introduction of methods related to 
biochemistry beginning at the end of World War II (1945) with the 
introduction of radioisotopes; these are used to tag biomolecules so that 
they can be followed through reactions and pathways. Other notable 
developments include gel electrophoresis (early 1960s), which allows 
separation and analysis of nucleic acids and proteins. By the early 

1970s, restriction enzymes 
(Chapter 21) had been 
shown to cut DNA strands 
at particular sequences in 
DNA molecules; this find-
ing opened the door to iso-
lating individual genes by 
recombinant DNA technol-

ogy. Polymerase chain reaction (Chapter 21) allowed the amplifica-
tion of selected DNA sequences from minute tissue samples. CRISPR 
technology (Chapter 23), introduced in 2013, allowed unprecedented 
opportunities for genome editing in living cells. Throughout this book 
we will be describing these and other benchmark technologies, and 
you may wish to refer back to this figure.

Biochemistry as a Discipline  
and an Interdisciplinary Science
In trying to define biochemistry, we must consider it both as an interdis-
ciplinary field and as a distinct discipline. Biochemistry shares its major 
concepts and techniques with many disciplines—with organic chemis-
try, which describes the properties and reactions of carbon-containing 
molecules; with physical chemistry, which describes thermodynamics, 
reaction kinetics, and electrical parameters of oxidation–reduction reac-
tions; with biophysics, which applies the techniques of physics to study 
the structures of biomolecules; with medical science, which increasingly 
seeks to understand disease states in molecular terms; with nutrition, 
which has illuminated metabolism by describing the dietary requirements 
for maintenance of health; with microbiology, which has shown that 
single-celled organisms and viruses are ideally suited for the elucidation 
of many metabolic pathways and regulatory mechanisms; with physiol-
ogy, which investigates life processes at the tissue and organism levels; 
with cell biology, which describes the metabolic and mechanical division 
of labor within a cell; and with genetics, which analyzes mechanisms that 
give a particular cell or organism its biochemical identity. Biochemistry 
draws strength from all of these disciplines, and it nourishes them in 
return; it is truly an interdisciplinary science.

▲  FIGURE 1.2  James Watson and Francis Crick with their hand- 
assembled wire model of the structure of DNA.

●● CONCEPT  Powerful new chemical 
and physical techniques have accel-
erated the pace at which biological 
processes have become understood in 
molecular terms.
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You may wonder about the distinction between biochemistry and molecular biology, because both fields 
take as their ultimate aim the complete definition of life in molecular terms. The term molecular biology 
is often used in a narrower sense to denote the study of nucleic acid structure and function and the genetic 
aspects of biochemistry—an area we might more properly call molecular genetics or genetic biochemistry.

Regardless of uncertainty in terminology, biochemistry is a distinct discipline, with its own iden-
tity. It is distinctive in its emphasis on the structures and reactions of biomolecules, particularly on 
enzymes and biological catalysis and on the elucidation of metabolic pathways and their control. As 
you read this book, keep in mind both the uniqueness of biochemistry as a separate discipline and the 
absolute interdependence of biochemistry and other physical and life sciences.

1.2  The Elements and Molecules of Living Systems
All forms of life, from the smallest bacterial cell to a human being, are constructed from the same 
chemical elements, which in turn make up the same types of molecules. The chemistry of living systems 
is similar throughout the biological world; the reactions and pathways that will concern us involve 
fewer than 200 different molecules. Undoubtedly, this continuity in biochemical processes reflects 
the common evolutionary ancestry of all cells and organisms. Let us begin to examine the composi-
tion of living systems, starting with the chemical elements and then moving to biological molecules.

The Chemical Elements of Cells and Organisms
Life is a phenomenon of the second generation of stars. This rather strange-sounding statement is based 
on the fact that life, as we conceive it, could come into being only when certain elements—carbon, 
hydrogen, oxygen, nitrogen, phosphorus, and sulfur (C, H, O, N, P, and S)—were abundant (FIGURE 1.4). 
The primordial universe was made up almost entirely of hydrogen (H) and helium (He), for only these 
simplest elements were produced in the condensation of matter following the primeval explosion, or 
“big bang,” which we think created the universe. The first generation of stars contained no heavier 
elements from which to form planets. As these early stars matured over the next seven to eight billion 
years, they burned their hydrogen and helium in thermonuclear reactions. These reactions produced 
heavier elements—first carbon, nitrogen, and oxygen, and eventually all the other members of the 
periodic table. As large stars matured, they became unstable and exploded as novas and supernovas, 
spreading the heavier elements through the cosmic surroundings. This matter condensed again to form 
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▲  FIGURE 1.4  Periodic table pertinent to biochemistry. The four tiers of chemical elements, grouped in 
order of their abundance in living systems, are highlighted in separate colors.

• In vivo NMR

1990
•
•

Atomic force microscopy
Scanning tunneling microscopy
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•Targeted gene disruption

•Single-molecule dynamics

• Gene analysis on microchips

• RNA-sequence analysis
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• Synthetic biology

• Cryo-electron microscopy
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• Second generation

DNA sequence analysis

• Proteomic analysis with
mass spectrometry

•
•
•

•
•
•

Pulsed field electrophoresis
Transgenic animals
Amplification of DNA: polymerase
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◀  FIGURE 1.3  The recent history of biochemistry as shown by the introduction of new research tech-
niques. The timeline begins with the introduction of radioisotopes as biochemical reagents, immedi-
ately following World War II.
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second-generation stars, at 
least some of which (like our 
sun) have planetary systems 
incorporating these heavier 
elements.  Our universe, 
which is now rich in second-

generation stars, has an elemental composition compatible with life 
as we know it.

Relatively few elements are involved in the creation of living sys-
tems. Living creatures on Earth are composed primarily of just four 
elements—carbon, hydrogen, oxygen, and nitrogen. These are also 
the most abundant elements in the universe, along with helium and 
neon. Helium and neon, inert gases, are not equipped for a role in life 
processes; they do not form stable compounds, and they are readily 
lost from planetary atmospheres.

The abundance of oxygen and hydrogen in organisms is explained 
partly by the major role of water in life on Earth. We live in a highly 
aqueous world, and, as we will see in Chapter 2, the solvent properties 
of water are indispensable in biochemical processes. The human body, 
in fact, is about 70% water. The elements C, H, O, and N are important 
to life because of their strong tendencies to form covalent bonds. In 
particular, the stability of carbon–carbon bonds and the possibility of 
forming single, double, or triple bonds give carbon the versatility to be 
part of an enormous diversity of chemical compounds.

But life is not built on these four elements alone. Many other elements 
are necessary for organisms on Earth, as you can see in Figure 1.4. A 
“second tier” of essential elements includes sulfur and phosphorus, which 
form covalent bonds, and the ions Na+ , K+ , Mg2 + , Ca2 + , and Cl−. Sulfur 
is a constituent of nearly all proteins, and phosphorus plays essential roles 
in energy metabolism and the structure of nucleic acids. Beyond the first 
two tiers of elements (which correspond roughly to the most abundant 
elements in the first two rows of the periodic table), we come to those 
that play quantitatively minor—but often indispensable—roles. As Figure 
1.4 shows, most of these third- and fourth-tier elements are metals, some 
of which serve as aids to the catalysis of biochemical reactions.In suc-
ceeding chapters we shall encounter many examples of the importance 
of these trace elements to life. Molybdenum, for example, is essential 
in nitrogen fixation—the reduction of nitrogen gas in the atmosphere to 
ammonia, for synthesis of nucleic acids and proteins (see Chapter 18).

The Origin of Biomolecules and Cells
Once the chemical elements had formed, during cooling of the second-
generation stars, how did the complex molecules that we associate with 
living systems come into being on Earth? An educated guess is that 
they arose as part of a “primordial soup” within the oceans. Because the 
strong oxidant, oxygen, was absent from Earth’s atmosphere, scientists 
hypothesize that a highly reducing environment prevailed within the 
primordial atmosphere, a condition that tends to promote joining reac-
tions of atoms and molecules. Moreover, high-energy discharges were 
thought to occur through lightning or volcanic eruptions, providing 
sufficient energy to drive atoms and small molecules together.

In 1953, Stanley Miller tested this hypothesis by simulating the pre-
sumed primordial environment. Miller mixed ammonia, methane, water, 
and hydrogen in a closed system subject to continuous electric discharge. 
After several days, the system was analyzed and shown to contain several 
amino acids, as well as other simple compounds, including carbon mon-
oxide, carbon dioxide, and hydrogen cyanide. Thus, it was established that 
biological compounds could have been produced abiotically (without living 

systems). Refinements of the Miller experiment have shown that much 
more complex organic molecules can also arise under similar conditions.

How we went from the primordial soup, rich in potential biomol-
ecules, to primitive living systems is still a matter of conjecture. Many 
biochemists believe that the earliest primitive systems, capable of self-
replication and some form of metabolism, were based on ribonucleic 
acid (RNA). RNA is a more versatile molecule than DNA, as we discuss 
in Chapters 4 and 8, and it is capable of catalyzing chemical reactions 
as well as storing information. Thus, biochemists speak of an ancient 
“RNA world,” in which simple self-replicating cellular structures, sur-
rounded by crude, lipid-rich membranes, might have existed. Eventu-
ally, because DNA is more stable than RNA, this presumed chemical 
evolution would have led to processes by which RNA or its component 
nucleotides could give rise to DNA-based life forms.

The earliest living systems would almost certainly have been anaerobic 
because of the absence of oxygen in the atmosphere. Energy was probably 
obtained from coupled oxidation–reduction reactions involving inorganic 
compounds of sulfur and iron. Over time, photosynthetic capability would 
have arisen, as some organisms evolved the ability to harness light energy 
from the sun to drive the reduction of inorganic compounds, notably CO2, 
to reduced organic compounds. Eventually, organisms would have devel-
oped the ability to use water as an electron donor, thereby creating enough 
oxygen over time to enrich the atmosphere with oxygen. Because much 
more energy can be derived through complete oxidation of organic com-
pounds than from anaerobic processes (see Chapter 11), aerobic organisms 
would have had a large evolutionary advantage.

As primitive bacteria underwent the numerous changes leading to 
characteristic features of eukaryotic cells—condensation of genes into 
chromosomes, development of intracellular membranous structures—
some eukaryotic cells acquired new metabolic capabilities through 
infection with aerobic bacteria or photosynthetic bacteria. Over time, 
the intracellular organisms living in this symbiotic relationship under-
went their own evolution, eventually becoming what we now recognize 
as mitochondria and chloroplasts in present-day cells.

How long might this process have taken? Geologists tell us that 
Earth was formed about 4.6 billion years ago. Rocks containing carbon 
of likely biological origin have been dated to more than 3.5 billion years 
ago. Evidence for aerobic bacteria and an oxygen-rich atmosphere dates 
to about 2.5 billion years ago, with the first eukaryotic microorganisms 
following about one billion years later. The earliest multicellular eukary-
otes are 400 to 500 million years old. Although we understand the forces 
that have shaped life since it arose—and these will be described as we 
proceed through our study of biochemistry—our understanding of the 
origin of life is conjectural. Although the spontaneous generation of self-
replicating entities seems highly improbable, the enormous amount of 
time during which this could have occurred changes the almost impos-
sible to highly likely, and perhaps inevitable.

The Complexity and Size of Biological Molecules
The complexity of life processes requires that many of the molecules gov-
erning them be enormous. Consider, for instance, the DNA molecules 
released from one human chromosome, as shown in FIGURE 1.5. The long, 
looped thread you see corresponds to a small part of a huge molecule, with 
a molecular mass of about 20 billion daltons. (A dalton, Da, is 1/12 the 
mass of a carbon-12 atom, 1.66 * 10−24 g.) Even a simple organism such 
as the single-celled bacterium Escherichia coli contains a DNA molecule 
with a molecular mass of about 2 billion Da—more than one millimeter 
long. Protein molecules are generally much smaller than DNA molecules, 

●● CONCEPT  Life depends primarily 
on a few elements (C, H, O, N, S, and P), 
although many others have essential 
functions as well.
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but they are still large, with molecular masses ranging from about 10,000 to 
one million Da. The complexity of these molecules is seen from the three-
dimensional structure of even a fairly small protein. FIGURE 1.6 illustrates 
the structure of myoglobin, an oxygen-carrying protein of muscle, which 
has a molecular mass of about 17,000 Da.

Biological macromolecules are giant molecules made up of smaller 
organic molecule subunits. In living organisms, there are four major 
classes of macromolecules, all essential to the structure and function of 
cells: proteins, nucleic acids, carbohydrates, and lipids. As we shall see 
throughout this text, there are good reasons for some biological materials 
to be so large. DNA molecules, for example, can be thought of as tapes 
from which genetic information is read out in a linear fashion. Because 
the amount of information needed to specify the structure of a multicel-
lular organism is enormous, these tapes must be extremely long. In fact, 
if the DNA molecules in a single human cell were stretched end to end, 
they would reach a length of about 2 meters. As revealed in the early 
twenty-first century through the Human Genome Project, the informa-
tion encoded in this DNA is sufficient to encode about 100,000 proteins, 
although the actual number of genes is far smaller.

The Biopolymers: Proteins, Nucleic Acids, and Carbohydrates
The synthesis of such large molecules poses an interesting challenge 
to the cell. If the cell functioned like an organic chemist carrying out 
a complex laboratory synthesis bit by bit, millions of different types 
of reactions would be involved, and thousands of intermediates would 
accumulate. Instead, cells use a modular approach for constructing 
large polymeric molecules. These biopolymers are made by joining 
together prefabricated units, or monomers. Of the four classes of 
macromolecules, three of them are biopolymers: proteins, nucleic 
acids, and carbohydrates. Lipids, the fourth class of macromolecule, 
are not considered polymers and are discussed in the next section.

The monomers of a given type of macromolecule are of limited 
diversity and are linked together, or polymerized, by identical mecha-
nisms. Each process involves condensation, or removal of a molecule 
of water in the joining reaction. A simple example is the carbohydrate 
cellulose (FIGURE 1.7(a)), a major constituent of the cell walls of plants. 
Cellulose is a polymer made by joining thousands of molecules of 
glucose, a simple sugar. In this polymer, all of the chemical linkages 
between the monomers are identical. Covalent links between glucose 
units are formed by removing a water molecule between two adjoining 
glucose molecules; the portion of each glucose molecule remaining in 
the chain is called a glucose residue. Because cellulose is a polymer 
of a simple sugar, or saccharide, it is called a polysaccharide. This 
particular polymer is constructed from identical monomeric units, so it 
is called a homopolymer. In contrast, many polysaccharides—and all 
nucleic acids and proteins—are heteropolymers, polymers constructed 
from a number of different kinds of monomer units.

Nucleic acids (Figure 1.7(b)) are polymers made up of four  
nucleotides, so nucleic acids are also called polynucleotides.  
Similarly, proteins (Figure 1.7(c)) are assembled from combinations of 

20 different amino acids. Protein 
chains are called polypeptides, 
a term derived from the peptide 
bond that joins two amino 
acids together.

Polymers form much of the structural and functional machinery of 
the cell. Polysaccharides serve both as structural components, such as cel-
lulose, and as reserves of biological energy, such as starch, another type 
of glucose polymer found in plants. The nucleic acids, DNA and RNA, 

▲  FIGURE 1.5  Part of the DNA from a single human chromosome. Most 
of the chromosomal proteins have been removed in this color-enhanced 
electron micrograph, leaving only a protein “skeleton” from which enor-
mous loops of DNA emerge.

▲  FIGURE 1.6  The three-dimensional structure of myoglobin. This 
computer-generated stick model portrays sperm whale myoglobin, the 
first protein whose structure was deduced by X-ray diffraction. It depicts, 
therefore, our first indication of the complexity and specificity of the 
three-dimensional structure of proteins. PDB ID: 1mbn.

●● CONCEPT  Cells use a modular 
approach for constructing large  
molecules.
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